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Abstract

The purpose of this note is to present a relation between directed best ap-
proximations of a rational vector and the elements of the minimal Hilbert
basis of certain rational pointed cones. Furthermore, we show that for a
special class of these cones the integer Carathéodory property holds true.
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1 Introduction

Throughout this paper we resort to the following notation. For integral points
z1, . . . , zm ∈ Zn, the set

C := cone
{
z1, . . . , zm

}
=

{
m∑

i=1

λiz
i : λ ∈ Rm

≥0

}

is called a rational polyhedral cone. It is called pointed if there exists a hyperplane
{x ∈ Rn : aT x = 0} such that {0} = {x ∈ C : aT x ≤ 0}. Here we are interested
in generating systems of the integral points contained in such a cone.

Definition 1.1. Let C ⊆ Rn be a rational polyhedral cone. A finite subset
H = {h1, . . . , ht} ⊆ C ∩ Zn is called a Hilbert basis of C if every z ∈ C ∩ Zn

has a representation of the form

z =
t∑

i=1

λih
i,

with non-negative integral multipliers λ1, . . . , λt. A minimal Hilbert basis with
respect to inclusion is also called an integral basis of the cone C and it is denoted
by H(C).

The name Hilbert basis was introduced by Giles and Pulleyblank [GP79] in
the context of totally dual integral systems. It was shown by Gordan [G1873]
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that every rational polyhedral cone has an integral basis and for pointed cones
we have the following result due to van der Corput [Cor31]: The integral basis
H(C) of a rational, pointed cone C ⊆ Rn is uniquely determined by

H(C) =
{

z ∈ C ∩ Zn\{0} : z can not be written as the sum

of two other elements of C ∩ Zn\{0}
}

.
(1.1)

Although Hilbert bases play a role in various fields of mathematics, like com-
binatorial convexity, geometry of numbers, special desingularizations of toric
varieties, or in integer programming, their geometrical structure is not very well
understood yet. Besides the property to be “irreducible” (cf. (1.1)) no other
geometrical property or characterization of the elements of a Hilbert basis is
known. This paper tries to give a bit more insight by studying Hilbert bases
(integral bases) of cones associated with the problem of simultaneous Diophan-
tine approximation.

To this end let A ∈ Zm×n be an integral matrix of rank n and let fA : Rn →
R≥0 be the norm on Rn defined by

fA(x) = |Ax|1 =
m∑

j=1

|ajx|,

where | · |1 denotes the l1-norm and aj denotes the j-th row of A . With respect
to that norm we study the

Directed Simultaneous Dioph. Approximation Problem (DSDAP) Let
p1, . . . , pn, pn+1 ∈ Z, pn+1 > 0, N ∈ N > 0. Find integers q1, . . . , qn ∈ Z and an
integer qn+1 ∈ N > 0 such that qn+1 ≤ N and

1. aj (q1/qn+1, . . . , qn/qn+1)
T ≥ aj (p1/pn+1, . . . , pn/pn+1)

T
, j = 1, . . . ,m,

2. fA (q1/qn+1 − p1/pn+1, . . . , qn/qn+1 − pn/pn+1) is minimal.

Observe, that by neglecting the restrictions of the form 1., the problem reduces
to the “standard” simultaneous Diophantine approximation problem of n ratio-
nals with respect to the norm fA.

It has been known for a long time that the two-dimensional simultane-
ous Diophantine approximation problem (n=1) can be solved in polynomial
time by the method of continued fractions as described in Khintchine [Khi56],
Perron [Per13] and Grötschel, Lovász and Schrijver [GLS88]. Moreover, in
the two-dimensional case best approximations have a nice geometric structure.
More precisely, for a given p = (p1, p2)T ∈ Z2 and N ∈ N let C(I1, p) =
cone {(1, 0)T , p} and C(−I1, p) = cone {(−1, 0)T , p}. Then it was shown by
Klein [K1895] that a point (q1, q2)T on the lower convex hull of one of the
two Klein polyhedra K+ = conv {C(I1, p) ∩ Z2\{0}}, K− = conv {C(−I1, p) ∩
Z2\{0}} yields a best approximation of p1/p2, that is, |q1/q2 − p1/p2| is mini-
mal among all rationals whose denominator is bounded by N . In particular, an
appropriate point (q+

1 , q+
2 )T ((q−1 , q−2 )T ) lying on the lower convex hull of K+

(K−) gives a best approximation of the directed problem: min |q1/q2 − p1/p2|,
q2 ≤ N and q1/q2 ≥ p1/p2 (q1/q2 ≤ p1/p2) (see also [BP94], [Fin93], [DS82]).
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Whereas the two dimensional case (n = 1) of the problem has been very
well understood, this much insight could not be gained for higher dimensions.
We show in this paper that for every dimension and every N ∈ N, a solution
to the directed simultaneous approximation problem with smallest denominator
belongs to the minimal Hilbert basis of the cone

C(A, p) =
{

x ∈ Rn+1 : pn+1a
j(x1, . . . , xn)T − xn+1a

j(p1, . . . , pn)T ≥ 0,

j = 1, . . . ,m, xn+1 ≥ 0
}

.
(1.2)

Since the integral basis of any two dimensional rational pointed cone C consists
of the integral points lying on the lower convex hull of conv {C ∩ Z2\{0}} (see
e.g. [Oda88] and the references within), Klein’s result follows indeed.

In the particular case when A coincides with the (n×n) identity matrix In,
we have C(In, p) = cone {e1, . . . , en, p}, where ei ∈ Rn+1 denotes the i-th unit
vector and p = (p1, . . . , pn+1)T . In section 3 we show that if all the integers pi

are successively divisible then the cone C(In, p) has the integer Carathéodory
property, that is, each z ∈ C(In, p) ∩ Zn can be written as a non-negative
integral combination of at most n elements of the minimal Hilbert basis. It
has been conjectured by Cook, Fonlupt&Schrijver [CFS86] that this integer
analogue of Carathéodory’s theorem holds true for any rational pointed cone.
This conjecture was proven by Sebö [Seb90] in dimensions ≤ 3 and has recently
been disproved by Bruns, Gubeladze, Henk, Martin and Weismantel [BGHMW]
in dimensions n ≥ 6.

2 Simultaneous Diophantine Approximation

In this section we consider the directed simultaneous Diophantine approximation
problem DSDAP introduced in the previous section.

Theorem 2.1. Among all solutions of DSDAP let q1, . . . , qn+1 be one with
denominator qn+1 as small as possible. Then the vector q = (q1, . . . , qn+1)T is
an element of the integral basis of C(A, p), that is, q ∈ H(C(A, p)).

Proof. For abbreviation we write x for the first n components of a vector x ∈
Rn+1 and x̃ for the “rational” vector (x1/xn+1, . . . , xn/xn+1) if xn+1 6= 0. On
account of the restrictions 1., the vector q is an element of the cone C(A, p) and
conversely, for each vector x ∈ C(A, p) with xn+1 > 0 the associated rational
vector x̃ satisfies the restrictions 1. By the choice of the norm fA this implies
that for x, y ∈ C(A, p), xn+1 > 0, yn+1 > 0 the norm fA(·) is linear on conv {x̃−
p̃, ỹ − p̃}, that is,

fA(λx̃ + (1− λ)ỹ − p̃) = fA (λ(x̃− p̃) + (1− λ)(ỹ − p̃))
= λfA(x̃− p̃) + (1− λ)fA(ỹ − p̃), 0 ≤ λ ≤ 1.

(2.1)

Observe, that C(A, p) is a pointed cone since rank(A) = n.
Now, suppose that q is not an element of the integral basis of C(A, p). Then

we can find two vectors v, w ∈ C(A, p) ∩ Zn\{0} such that q = v + w (cf. (1.1))
and therefore

q̃ =
1

vn+1 + wn+1
v +

1
vn+1 + wn+1

w (2.2)
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Let vn+1 ≥ wn+1 ≥ 0. We have to distinguish two cases.
I. Let wn+1 = 0. By (2.2) and (1.2) we get for each j ∈ {1, . . . ,m}

aj (q̃ − p̃) = aj ṽ +
1

vn+1
ajw − aj p̃ ≥ aj (ṽ − p̃) .

Since v, w ∈ C(A, p)\{0} and rang(A) = n the equality cannot hold everywhere,
and summation over all indices j = 1, . . . ,m yields fA(q̃− p̃) > fA(ṽ− p̃). This
contradicts the fact that (q1, . . . , qn+1) is a solution of DSDAP.
II. Let vn+1 ≥ wn+1 > 0. Then we may write (cf. (2.2))

q̃ =
vn+1

vn+1 + wn+1
ṽ +

wn+1

vn+1 + wn+1
w̃

and (2.1) implies

fA(q̃ − p̃) =
vn+1

vn+1 + wn+1
fA(ṽ − p̃) +

wn+1

vn+1 + wn+1
fA(w̃ − p̃).

Thus, by the minimality of q we conclude that fA(ṽ−p̃) = fA(w̃−p̃) = fA(q̃−p̃).
This contradicts the minimality of the denominator qn+1 and completes the
proof.

We remark that for A = In, fA(·) is the l1-norm. Then DSDAP is the problem to
find a best approximation “from above” of the given rationals by other rationals
whose common denominator is bounded. As pointed out in the introduction,
the solutions of this problem for n = 1 can be interpreted as the lattice points
lying on the lower convex hull of the conv

{
C(I1, p) ∩ Z2\{0}

}
. However, in

general it is not sufficient to consider only the lattice points on the lower convex
hull of C(In, p). To see this, let p = (1, . . . , 1, r)T ∈ Zn+1, n ≥ 2, r > 1
and let N = r − 1. Then C(In, p) = cone {e1, . . . , en, p} and the lower convex
hull of conv

{
C(In, p) ∩ Zn+1\{0}

}
is given by conv {e1, . . . , en, p}. Obviously,

1/(r− 1), . . . , 1/(r− 1) is a solution of DSDAP, but the vector (1, . . . , 1, r− 1)T

is not contained in conv {e1, . . . , en, p}.

3 Carathéodory property for special cones

The Carathéodry property also holds for a special family of cones that we in-
vestigated in Section 2.

Theorem 3.1. Let C = cone{e1, . . . , en−1, p} with p = (p1, . . . , pn)T ∈ Nn

satisfying p1 = 1 and pi|pi+1, 1 ≤ i ≤ n − 1, that is, the numbers pi are
successively divisible. Let H(C) be the integral basis of C. Then for each z ∈
C∩Zn there exist at most n elements b1, . . . , bn of H(C) such that z =

∑n
i=1 vib

i

with vi ∈ N.

Proof. We use double induction with respect to the dimension n and the last
coordinate pn of the vector p. For n = 2 the theorem follows from the more
general result of Sebö [Seb90]. Let n ≥ 3. If pn = 1 then the generators of C
constitute a basis of Zn and the result follows. Hence, let pn ≥ 2 and let

P (C) =

{
z ∈ Zn : z =

n−1∑
i=1

λie
i + λnp, 0 ≤ λi < 1

}
=

{
(1, dj · p2/pne , . . . , dj · pn−1/pne , j)T : 1 ≤ j ≤ pn − 1

}
.
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We prove that
H(C) =

{
e1, . . . , en−1, p

}
∪ P (C).

For simplification we distinguish two cases.

I. p2 = 1. Let z ∈ C ∩ Zn. We first analyze the case when z1 ≥ z2. For a
vector x ∈ Rn let x̃ = (x2, . . . , xn)T be its orthogonal projection onto the plane
{x ∈ Rn : x1 = 0} (identified with Rn−1). Then z̃ is an integral vector of the
(n − 1)-dimensional cone C̃ = cone{ẽ2, . . . , ẽn−1, p̃} which is of the same type
as the cone C. Hence, by induction hypothesis with respect to the dimension
we can find b̂1, . . . , b̂n−1 ∈ H(C̃) such that z̃ =

∑n−1
i=1 vib̂

i, vi ∈ N. Now, it easy
to see that bi = (1, b̂i)T ∈ H(C) and since b̂i

2 = 1 we get

z =
n−1∑
i=1

vib
i + (z1 − z2)e1.

Of course, the case z2 ≤ z1 can be treated in the same way with respect to the
orthogonal projection onto the plane {x ∈ Rn : x2 = 0}.
II. p2 > 1. Let v = (1, 1, p3/p2, . . . , pn/p2)T ∈ P (C). Then we may write
v = (1/p2)p + ((p2 − 1)/p2)e1 and thus v is contained in the relative interior of
a 2-face of the cone C. Hence, C = C1 ∪ C2 with

C1 = cone{e1, . . . , en−1, v} and C2 = cone{e2, . . . , en−1, v, p}.

Next we claim

C1 and C2 satisfy the Carathéodory property. (3.1)

Obviously, C1 is of the same type as C but with vn < pn and therefore, we may
assume that the Carathéodory property holds for this cone. Now, let U be the
unimodular matrix determined by Uv = e1, Uei = ei, i = 2, . . . , n and let

p = Up =
(

1, p2 − 1,
p3

p2
(p2 − 1), . . . ,

pn

p2
(p2 − 1)

)T

.

Then UC2 = cone{e1, . . . , en−1, p} and this cone is of the same type as C but
with pn < pn. Therefore, we can assume that the Carathéodory property holds
for the cone UC2 and hence, also for C2.
Finally, we claim

H(C1) ∪H(C2) = H(C). (3.2)

Obviously,

H(C1) =
{
e1, . . . , en−1, v

}
∪

{(
1,

⌈
j
v2

vn

⌉
, . . . ,

⌈
j
vn−1

vn

⌉
, j

)
: 1 ≤ j ≤ vn

}
=

{
e1, . . . , en−1, v

}
∪

{(
1,

⌈
j
p2

pn

⌉
, . . . ,

⌈
j
pn−1

pn
,

⌉
, j

)T

: 1 ≤ j ≤ pn

p2

}
.

Thus H(C1) ⊂ H(C). For the cone UC2 we get

H(UC2) = {e1, . . . , en−1, p} ∪
{

wj : j = 1, . . . ,
pn

p2
(p2 − 1)

}
,

5



where wj = (1, djp2/pne, . . . , djpn−1/pne, j)T , 1 ≤ j ≤ pn/p2(p2 − 1). Now,

U−1wj =
(

1,

⌈(
j +

pn

p2

)
p2

pn

⌉
, . . . ,

⌈(
j +

pn

p2

)
pn−1

pn

⌉
, j +

pn

p2

)T

and this shows H(C2) ⊂ H(C). Now, (3.2) follows from the trivial observation
H(C) ⊂ H(C1) ∪H(C2).

On account of C = C1 ∪ C2, (3.1) and (3.2) we get the desired result.

We remark that with small modifications of the above proof one can show that
a cone C as in Theorem 3 admits a unimodular partition, that is, one can find
subcones Ci generated by the elements of H(C), such that i) the generators of
Ci form a basis of Zn, ii) the union of the subcones Ci covers C and iii) the
intersection of two distinct subcones is a face of both. Of course, this property
implies the Carathéodory property.
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